The Explicit-Implicit-Null method: Removing the numerical instability of PDEs

نویسندگان

  • Laurent Duchemin
  • Jens Eggers
چکیده

Article history: Received 1 August 2013 Received in revised form 7 January 2014 Accepted 10 January 2014 Available online 16 January 2014

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-accuracy alternating segment explicit-implicit method for the fourth-order heat equation

Based on a group of new Saul’yev type asymmetric difference schemes constructed by author, a high-order, unconditionally stable and parallel alternating segment explicit-implicit method for the numerical solution of the fourth-order heat equation is derived in this paper. The truncation error is fourth-order in space, which is much more accurate than the known alternating segment explicit-impli...

متن کامل

A New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme

Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...

متن کامل

A New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme

Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...

متن کامل

An adaptive multiresolution scheme with local time stepping for evolutionary PDEs

We present a fully adaptive numerical scheme for evolutionary PDEs in Cartesian geometry based on a second-order finite volume discretization. A multiresolution strategy allows local grid refinement while controlling the approximation error in space. For time discretization we use an explicit Runge–Kutta scheme of second-order with a scale-dependent time step. On the finest scale the size of th...

متن کامل

Study of Numerical Processing Speed, Implicit and Explicit Memory, Active and Passive Memory, Conservation Abilities, and Visual-Spatial Skills of Students with Dyscalculia

Background and Purpose: Learning disorder is one of the common disorders in students, which can lead to the occurrence of educational problems and secondary disorders in them. Based on psychopathological criteria, dyscalculia is one of the subcategories of learning disorder. Children with this disorder have problems in perception of spatial relations and in different cognitive abilities. Theref...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 263  شماره 

صفحات  -

تاریخ انتشار 2014